A small frog wants to get to the other side of the road. The frog is currently located at position X and wants to get to a position greater than or equal to Y. The small frog always jumps a fixed distance, D.
Count the minimal number of jumps that the small frog must perform to reach its target.
Write a function:
int solution(int X, int Y, int D);
that, given three integers X, Y and D, returns the minimal number of jumps from position X to a position equal to or greater than Y.
For example, given:
X = 10
Y = 85
D = 30
the function should return 3, because the frog will be positioned as follows:
after the first jump, at position 10 + 30 = 40
after the second jump, at position 10 + 30 + 30 = 70
after the third jump, at position 10 + 30 + 30 + 30 = 100
Write an efficient algorithm for the following assumptions:
X, Y and D are integers within the range [1..1,000,000,000];
X ≤ Y.
Count the minimal number of jumps that the small frog must perform to reach its target.
Write a function:
int solution(int X, int Y, int D);
that, given three integers X, Y and D, returns the minimal number of jumps from position X to a position equal to or greater than Y.
For example, given:
X = 10
Y = 85
D = 30
the function should return 3, because the frog will be positioned as follows:
after the first jump, at position 10 + 30 = 40
after the second jump, at position 10 + 30 + 30 = 70
after the third jump, at position 10 + 30 + 30 + 30 = 100
Write an efficient algorithm for the following assumptions:
X, Y and D are integers within the range [1..1,000,000,000];
X ≤ Y.
int solution(int X, int Y, int D) { // write your code in C++11 (g++ 4.8.2) return (Y - X + (D - 1)) / D; }
Không có nhận xét nào:
Đăng nhận xét