Located on a line are N segments, numbered from 0 to N − 1, whose positions are given in arrays A and B. For each I (0 ≤ I < N) the position of segment I is from A[I] to B[I] (inclusive). The segments are sorted by their ends, which means that B[K] ≤ B[K + 1] for K such that 0 ≤ K < N − 1.
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5
A[1] = 3 B[1] = 6
A[2] = 7 B[2] = 8
A[3] = 9 B[3] = 9
A[4] = 9 B[4] = 10
The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
int solution(vector<int> &A, vector<int> &B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [0..30,000];
each element of arrays A, B is an integer within the range [0..1,000,000,000];
A[I] ≤ B[I], for each I (0 ≤ I < N);
B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
Two segments I and J, such that I ≠ J, are overlapping if they share at least one common point. In other words, A[I] ≤ A[J] ≤ B[I] or A[J] ≤ A[I] ≤ B[J].
We say that the set of segments is non-overlapping if it contains no two overlapping segments. The goal is to find the size of a non-overlapping set containing the maximal number of segments.
For example, consider arrays A, B such that:
A[0] = 1 B[0] = 5
A[1] = 3 B[1] = 6
A[2] = 7 B[2] = 8
A[3] = 9 B[3] = 9
A[4] = 9 B[4] = 10
The segments are shown in the figure below.
The size of a non-overlapping set containing a maximal number of segments is 3. For example, possible sets are {0, 2, 3}, {0, 2, 4}, {1, 2, 3} or {1, 2, 4}. There is no non-overlapping set with four segments.
Write a function:
int solution(vector<int> &A, vector<int> &B);
that, given two arrays A and B consisting of N integers, returns the size of a non-overlapping set containing a maximal number of segments.
For example, given arrays A, B shown above, the function should return 3, as explained above.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [0..30,000];
each element of arrays A, B is an integer within the range [0..1,000,000,000];
A[I] ≤ B[I], for each I (0 ≤ I < N);
B[K] ≤ B[K + 1], for each K (0 ≤ K < N − 1).
bool is_overlapped(int a1, int b1, int a2, int b2) { return ((a1 <= a2) && (a2 <= b1)) || ((a2 <= a1) && (a1 <= b2)); } int solution(vector<int> &A, vector<int> &B) { // write your code in C++11 (g++ 4.8.2) int s = int(A.size()); if (s == 0) return 0; else if (s == 1) return 1; int start = A[s- 1]; int end = B[s - 1]; int num = 1; for (int i = (B.size() - 2); i >= 0; i--) { if (!is_overlapped(start, end, A[i], B[i])) { num ++; start = A[i]; end = B[i]; } else { start = max(A[i], start); } } return num; }
Không có nhận xét nào:
Đăng nhận xét