An integer N is given, representing the area of some rectangle.
The area of a rectangle whose sides are of length A and B is A * B, and the perimeter is 2 * (A + B).
The goal is to find the minimal perimeter of any rectangle whose area equals N. The sides of this rectangle should be only integers.
For example, given integer N = 30, rectangles of area 30 are:
(1, 30), with a perimeter of 62,
(2, 15), with a perimeter of 34,
(3, 10), with a perimeter of 26,
(5, 6), with a perimeter of 22.
Write a function:
int solution(int N);
that, given an integer N, returns the minimal perimeter of any rectangle whose area is exactly equal to N.
For example, given an integer N = 30, the function should return 22, as explained above.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..1,000,000,000].
The area of a rectangle whose sides are of length A and B is A * B, and the perimeter is 2 * (A + B).
The goal is to find the minimal perimeter of any rectangle whose area equals N. The sides of this rectangle should be only integers.
For example, given integer N = 30, rectangles of area 30 are:
(1, 30), with a perimeter of 62,
(2, 15), with a perimeter of 34,
(3, 10), with a perimeter of 26,
(5, 6), with a perimeter of 22.
Write a function:
int solution(int N);
that, given an integer N, returns the minimal perimeter of any rectangle whose area is exactly equal to N.
For example, given an integer N = 30, the function should return 22, as explained above.
Write an efficient algorithm for the following assumptions:
N is an integer within the range [1..1,000,000,000].
int solution(int N) { // write your code in C++11 (g++ 4.8.2) int i = 1; int A = 1; while (i * i < N) { if (N % i == 0) { A = i; } i++; } if (i * i == N) { A = i; } return (A + (N / A)) * 2; }
Không có nhận xét nào:
Đăng nhận xét